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Abstract-A boundary element method is developed for the solution of time·dependent problems
in three-dimensional thermoelasticity. The time domain, boundary-only formulation represents the
first of its kind for quasistatic analysis, which by definition considers transient heat conduction. but
ignores the effects of inertia. By eliminating the need for volume discretization. the method becomes
an attractive alternative to finite element analysis for this class of problems. Additionally, because
an exact Green's function is used in the interior, steep thermal gradients can be captured much
more readily than with standard domain-based methods.

The presentation includes details of the fundamental solution, a derivation of the boundary
integral equations, and an overview ofa general purpose numerical implementation. This implemen­
tation permits the solution of large, multiregion problems with arbitrary geometry and boundary
conditions. Several examples are included to validate the proposed method. as well as to highlight
its usefulness.

INTRODUCTION

In many physical processes, components must be designed to withstand thermal transients
which may tend to cause excessive distortion, fatigue, or rupture. Often simple formulas
are not sufficient to provide reliable estimates ofcomponent life, and detailed thermal stress
analysis is required. Unfortunately, in such situations, two-dimensional and axisymmetric
approximations are also typically not valid, and full three-dimensional analysis must be
performed.

In the present work, a three-dimensional boundary element method is developed for the
time-dependent thermoelastic analysis ofsuch components. The method operates directly in
the time domain, and most importantly, requires no volume discretization. Thus, transient
thermal stresses can be obtained from a model consisting exclusively of surface elements.
Not only does this considerably reduce the manpower requirements for modeling and post­
processing, but because the exact Green's function is used in the interior of the body, steep
thermal gradients near the surface can be captured much more readily than with domain­
based methods.

Before deriving this new formulation, a brief review of the existing literature is appro­
priate. Some of the relevant work has appeared within the context of poroelasticity, which
is analogous to thermoelasticity.

The pioneering effort in thermoelasticity by Rizzo and Shippy (1977) addresses the
three-dimensional steady-state problem. Using the analogy of Goodier, temperature gradi­
ents are considered as body forces. Then, the properties of a steady-state temperature
distribution are exploited to convert the resulting equivalent body force volume integral
into surface integrals. Thus, the problem requires only boundary discretization. The descrip­
tion of the steady-state temperature and flux distribution, which is needed, can be obtained
from an earlier heat conduction analysis. Details of the numerical implementation are also
provided in the paper, along with two thermal stress examples for a 24-element hollow
cylinder. In that same year, Cruse et al. (1977) derived a BEM for steady-state axisymmetry
by using a Galerkin vector approach.

For the quasistatic problem, Banerjee and Butterfield (1981) introduced a staggered
procedure to solve the coupled set ofporoelastic equations. The algorithm requires solution
of the transient flow equation, followed by a deformation analysis at each time step.
However, this deformation analysis involves time-dependent body forces which are included
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via volume integrals. As a result, complete domain discretization is required. Interestingly,
a large number of researchers have since used this same scheme. including a recent effort
by Chaudouet (1987). On the other hand, several authors have written out proposed
formulations for quasistatic thermoelasticity using transient fundamental solutions, but
then stopped short without attempting any numerical implementation. Included in this
group are Tanaka and Tanaka (1981), Sladek and Sladek (1983. 1984) and Masinda
(1984). Actually, only Sharp and Crouch (1986) have reported any numerical results. Their
formulation, for two-dimensional analysis, utilizes time-dependent fundamental solutions,
but then unfortunately retains volume integrals for the time marching algorithm. Recently,
the present authors have also developed a BEM formulation for planar problems (Dargush
and Banerjee, 1989); however, the work detailed here focuses on the complete, three­
dimensional theory.

GOVERNING EQUATIONS

The differential equations governing the behavior of a thermoelastic solid under qua­
sistatic conditions can be written as

().+ p.)uj.iJ + P.Ui.jj - (3),+ 2p.)a8,i + j; = 0

k8,jj-pcJ}+l/! = 0

(la)

(1 b)

where U;, displacement vector; 8, temperature ;/;, body force; l/!, body source; i., p., Lame's
isothermal elastic constants; a, coefficient of thermal expansion; k, thermal conductivity;
p, mass density; c., specific heat at constant strain.

All Latin indices vary from one to three, commas represent spatial derivatives, and
the superposed dot denotes differentiation with respect to time. In the derivation of (1),
infinitesimal deformations have been assumed, along with the standard isotropic consti­
tutive laws. Note that for the theory portrayed above, inertia has been ignored in the
momentum egn (Ia). Additionally, dilatational coupling terms in the energy eqn (1 b) have
been assumed to be negligible, which is the case for most practical problems. The result of
these simplifications is the theory of Uncoupled Quasistatic Thermoelasticity (UQT).

To complete the formulation ofa well-posed problem, boundary and initial conditions
must be specified. Formally, the boundary conditions for all points X on S can be written
as

U; = Uj(X,/) (2a)

or

I j = Tj(X, t) (2b)

or

I; = K(X,/)u; (2c)

and

8 = 0(X, I) (3a)

or

q = Q(X,/) (3b)

or

q = H(X, t)[0amb (X, I) - 8]. (3c)

The initial conditions



BEM in 3-0 thermoelasticity 201

(4)

are required for all points Z, in Vat time zero. In the above, q is the heat flux normal to
the surface S, and ti is the traction vector. Meanwhile, eqns (2c) and (3c) represent the
familiar spring and convection boundary conditions, respectively, in which: K(X, t) is spring
stiffness; H(X, t) is film coefficient and 0 amb(X, t) is ambient fluid temperature.

The specification of (2), (3) and (4) along with (I) completely defines the UQT problem.

FUNDAMENTAL SOLUTIONS

One of the requirements for the development of a boundary element method for UQT
is the infinite space fundamental solutions ofequations (I). In particular, three-dimensional
unit force and unit source solutions are needed. Nowacki (1966) developed the cor­
responding time-domain Green's functions for the more general theory of coupled qua­
sistatic thermoelasticity (CQT). However, since UQT is simply a subset ofCQT, the desired
fundamental solutions for (1) can be obtained directly from the work of Nowacki.

Consider, first, the effect of a unit pulse force in the j-direction acting at the point ~

and time T in an infinite medium. In the uncoupled theory, this force produces a displacement
in the i-direction at point X and time t of the form

(5a)

where Yi = XI- ei; ,2 = YiYi and XI and ei are obviously the coordinates of X and e, respec­
tively. Notice that the pulse force produces a response only at the instant t = T. At that
instant, however, the displacement field is spatially identical to the elastostatic Green's
function.

On the other hand, there is no temperature change anywhere in the infinite body due
to the unit force. Thus,

(5b)

where the subscript 8 identifies g81 as a temperature response.
The other fundamental solution that is needed is that due to a unit pulse heat source

acting, again, at point eand time T in an infinite medium. Now, the displacement field
becomes

(5c)

while the temperature response is

(5d)

In (5c) and (5d),

r
,., = [c(t-T)] 1/2

k
c=­

pc.

(6a)

(6b)

(6c)
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(6d)

with the error function defined by

2 r= ,
erf (=) = ~ Jo e-x- dx. (6e)

This entire Green's function for UQT can be rewritten simply as 9~f/(X, t;" f), where
the Greek indices assume values from one to four. In this notation, the components
associated with temperatures and heat sources are placed in the fourth position. Thus,

_ ~ij 9;eJ9.f/ - .
ej gee

(7)

Similarly, displacements, forces and tractions can be generalized to include the analogous
thermal quantity as a fourth component. That is, let

u. = {u I U2 U3 0V
f. = {II 12 13 '" V
t. = {tt t2 t3 q}T.

(8a)

(8b)

(8c)

Armed with this notation, the governing differential eqns (1) can be rewritten in
convenient operator notation as

L~f/uf/+J. = 0

where the linear operator, L'f/' has components of the form

Lej = 0

82 8
Lee = k iJx

m
iJx

m
-pc. iJt'

Then, using L.f/ to operate on the fundamental solution, one has

(9)

(lOa)

(lOb)

(lOc)

(lOd)

(II)

In (11), the subscript y also varies from one to four and Kronecker's delta function has
been generalized in an obvious manner. This notation will be quite useful, in the folldwing
section, in the development of a boundary integral formulation for UQT.

BOUNDARY INTEGRAL FORMULATION

The desired integral representation can be derived directly from the set of governing
differential equations defined in (9). Clearly, eqns (9) must hold for all points of the body
at every instant of time. Therefore, the left-hand side of (9) multiplied by an arbitrary
function, say 9,..,1' and integrated over time and space must remain equal to zero. That is,
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(12)

where the standard notation for the inner product of two functions has been introduced.
Returning to the explicit definitions of the differential operators, this becomes

Next, the divergence theorem can be applied, repeatedly, to the applicable terms in (13) to
transfer spatial as well as temporal derivatives from u/I to Urry. As a result, eqns (13) are
transformed into

J: i I9rryt.-1rryu.] dS dr+ J: f. [Urry,h] dV dr- f. [pc.U91ul/l~] dV

+ J: f. (LuUil'.m",+(A+J.t)U...,..im]Ui+[PU...,.,mm+ kUev.mm+PC.991]UI/) dV dr = 0, (14)

where

tl = P(UI,m+u""I)n",+Au",,mnl-pUl/nl

tl/ = q = kUI/.mn",

1il' = P (Uil'.m +U...,..I )n", +AU...,..m nl

191 = kU91,m n",

(15a)

(l5b)

(I5c)

(15d)

with n/ defined as the normal to the surface S at X. To complete the derivation of the
boundary integral equation for any point ~ interior to S at time t, the last volume integral
appearing in (14) must be reduced to -Uy(e, t). This is accomplished if

(16)

or, after making use of the properties of the delta function

(17)

where the operator, ill«, has components

ijfJ =0
_ a

LI// =Pax;

_ 02 a
L oo = k a a +pc.-;-.x", x", vt

(I8a)

(I8b)

(18c)

(18d)

Formally, i/l. is termed the adjoint of the original UQT differential operator L./I and Ur;
defined by (17) is the adjoint Green's function. While at first sight it seems that an entirely
new fundamental solution of (17) is required for a boundary integral formulation, for­
tunately this is not the case. In fact, the adjoint Green's function can be obtained by suitably
transposing the fundamental solutions presented in the previous section. Specifically,
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g,;.(X.t:;.r) =g;,(;.r:X.t). ( 19)

Substituting (19) into (14) produces the desired boundary integral equation

l/; (~. t) = i [g;., * t, - f, *1I,] dS. (20)

in which, for simplicity, the initial conditions and generalized body forces have now been
assumed zero. The * in (20) symbolizes a Riemann convolution integral, where

a*b= f:a(t-r)b(r) dr. (21)

In problems which include body forces, body sources, or a non-zero initial temperature
distribution, a volume integral must be added to eqn (20). However, in most physically
meaningful cases, an alternative treatment of this volume integral is possible, thereby
eliminating the need for complete volume discretization. For example, the volume integrals,
corresponding to centrifugal body forces or any initial temperature distribution which
represents a steady-state thermal field, can be converted directly into surface integrals. On
the other hand, the effects oflocalized forces or heat sources can be included by analytically
integrating the kernel functions over spheres or rectangular parallelepipeds.

Equation (20) represents a generalized form of Somigliana's identity for UQT, and as
such, is an exact statement. However, the nature of the fundamental solutions g,. permits
further simplification that will enhance the numerical implementation of (20). In particular,
withgoj and, consequentlyJOj identically zero, the determination of (J(~, t) is independent of
UI and tl' This result is certainly not surprising, since the standard procedure in thermoelastic
analysis involves the solution of the thermal problem as a separate first step. Additionally,
the convolution integral involving gl} and hj can be eliminated by employing the sifting
property of the delta function that is present in these components. Finally, then. the integral
statement becomes

()(~, t) =i[goo * q-!Oo * 0] dS

UI(~' t) =i[gijtj(X, t)-};jUj(X, t)+glo *q-};o *0] dS.

(22a)

(22b)

By utilizing eqns (22), the temperature and displacements can be determined at any
point ~ within the body at any time t. However, in order to evaluate the right-hand side of
(22), the entire history of temperature and flux, along with the instantaneous values of the
displacements and tractions, must be known everywhere on the bounding surface. Typically,
all of this information is not known a priori and, instead, must be determined as part of
the solution to an initial-boundary-value problem.

With that in mind, the UQT integral equations are rewritten for a point'; directly on
the boundary S. The result is

C88(~)9(e,t) = i[goo * q-!Oo *0] dS (23a)

cl}(~)Uj(e,t) = ![g;/j(X, t)-};jl/j(X,t)+giO* q-};o *0] dS (23b)

in which a constant matrix c.p(~) is introduced. This new matrix c.p is a function only of
the local geometry of S at ~, and reduces to CJ,p/2 on a smooth surface. Additionally, in
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(23), terms associated with !xp must be treated as Cauchy principal value integrals due to
the order of the singularity as X -+ ~ and 't' -+ t. With that established, eqns (23) become the
desired boundary integral equations for UQT, and provide the basis for the boundary
element implementation which is discussed in the following section. First, however, it should
be emphasized that, from (23), convolution is only required for the temperature and flux­
related terms. As a consequence, a very attractive computational algorithm can be developed
for UQT.

NUMERICAL IMPLEMENTAnON

In order to solve general initial-value problems, discretizations of (23) must be intro­
duced in both time and space. However, before proceeding, it is better from a notational
standpoint to revert to a more generalized form of these boundary integral equations. Thus,
eqns (23) are rewritten as simply

Cpx( ~)u«(~, t) =i [gp« * t« - !P« *uxl dS, (24)

with the computational efficiencies present in (23) tacitly implied.
For the temporal approximation, the primary field variables u« and tx are assumed

constant within each ofN equal time increments ofduration At. As a result, the convolution
integrals appearing in (24) are converted into a series of N terms. That is, eqns (24) become

(25)

in which

(26a)

(26b)

and where the superscripts on the primary variables represent the time step increment. The
kernel functions appearing in (25) are explicitly defined in the Appendix.

There are, ofcourse, singularities present in these kernels when the load point and field
point coincide and t = 't'. Series expansions of the evolution functions are useful to determine
the level of the singularities in the various components of Gpx and Fp«. The results of this
examination are summarized in Table 1.

Before continuing, a number of items should be emphasized concerning the nature of
the UQT kernels. First, as would be expected, F~p has a stronger level of singularity than
does the corresponding G~ since an additional derivative is involved in obtaining F~p from
G~p. Second, the coupling terms do not have as high a degree of singularity as do the
corresponding non-coupling terms. For example, compare G ~j to G Ij • Third, all of the

Table I. Kernel singularities

Component
Level of

singularity

Ilr
o

non-singular
Ilr

non-singular

Component
Level of

singularity

IIr2

o
Ilr
IIr2

non-singular
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kernel functions for the first time step could actually be rewritten as a sum of steady-state
and transient component. That is,

G,lp = ssG,P + IfG,lp

F;p = SSF,P+"F;p.

Then, the singularity is completely contained in the steady-state portion. Furthermore, the
singularity in Gij and Fij is precisely equal to that for elastostatics, while the G ~8 and F~8

singularities are identical to those for potential flow. This observation is critical in the
numerical integration of the F.{J kernel to be discussed shortly. However, from a physical
standpoint, this means simply that, at any time t, the nearer one moves toward the load
point, the closer the quasistatic response field corresponds with a steady-state field. Eventu­
ally, when the sampling and load points coincide, the quasistatic and steady-state responses
are indistinguishable. Finally, it should be noted that the steady-state components in the
kernels G~fJ and F~{J, with n > 1, vanish. In that case, all that remains is a transient portion
that contains no singularities. Thus, all singularities reside in the ssG.{J and ssF,{J components
of G ~{J and F~fJ' respectively.

Next, spatial discretization is introduced in order to evaluate the surface integrals
appearing in (25). In the present implementation, quadratic boundary elements are available
for the description of the geometry, while both linear and quadratic variation of the
primary field variables is supported. Once the discretization is defined, the nodal generalized
displacements and tractions can be brought outside the surface integral. Then, the remaining
shape function-kernel products are integrated numerically. Sophisticated, self-adaptive
integration algorithms are employed to ensure accuracy and numerical efficiency. Details
can be found in Banerjee et al. (1986) and Ahmad and Banerjee (1988).

With the discretization of the boundary integral equation, in both time and space,
complete, a system of algebraic equations can be developed to permit the approximate
solution of the original quasistatic problem. This is accomplished by systematically writing
the integral equations at each global boundary node. The ensuing nodal collocation process
produces a global set of equations of the form

N

L ([G N+ I-n]{tn } _[FN+ I-n]{u"}) = {O},
n= ,

(27)

in which {tn} and {un} are nodal quantities with the superscript referencing the time step
index. It should be noted that during this collocation process, an extension of the indirect
"rigid body" technique (Cruse, 1974; Banerjee et al., 1986) is employed to determine the
strongly singular diagonal block of [F 1

].

In a well-posed problem, at any time t, the set ofglobal generalized nodal displacements
and tractions will contain exactly 4P unknown components, where P is the total number
of functional nodes. Then, as the final stage in the assembly process, eqn (27) can be
rearranged to form (Banerjee et al., 1986).

N-I

[A']{xN} = [B1]{yH}- L ([GN+I-n]{tn}_[FN+I-n]{u"})
n-I

(28)

in which {xN} and {yN} represent the unknown and known nodal components, respectively.
In addition, the summation represents the effect of past events. Thus, all quantities on the
right-hand side of (28) are known at time step N. Additionally, since from (23) convolution
is required only on the temperature and flux, terms involving displacement and traction
can be omitted from the summation.

It should be emphasized that the entire boundary element method presented, in this
section, has involved surface quantities exclusively. A complete solution to the well-posed
linear quasistatic problem, with homogeneous properties, can be obtained in terms of the
nodal boundary response vectors, without the need for any volume discretization.
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In many practical situations, however, additional information, such as the temperature
at interior locations or the stress at points on the boundary, is required. Once equation (28)
is solved, at any time step, the complete set of primary nodal quantities, {UN} and {I'"},
is known. Subsequently, the response at points within the body can be calculated in a
straightforward manner. For any point ein the interior, the generalized displacement can
be determined from (24) with cp. ;::: ~p.•. However, when ~ is on the boundary, the strong
singularity in ssFp• prohibits accurate direct evaluation of the generalized displacement, and
an alternate approach is required. Instead, the surface quantities are determined directly
from the elemental shape functions. As a result, neither integration nor the explicit con­
tribution of past events are needed to evaluate generalized boundary displacements.

Meanwhile, interior stresses can be evaluated from

at (~);::: £(r[E~/ 1-" (X - e)tp - D'/;! I-"(X- ~)upJ dS(X») (29)
n= ( Js

in which

(30a)

(30b)

These kernel functions are detailed in the Appendix.
Since strong kernel singularities once again appear when (29) is written for boundary

points, surface stress is, instead, obtained via an extension of the technique developed by
Cruse and Van Buren (1971) for elastostatics.

The entire quasistatic thermoelastic formulation has been implemented directly in GP­
BEST, a state-of-the-art, general purpose boundary element computer program. Conse­
quently, many additional features are available for the analysis of complex engineering
problems, including a generic multiregion (GMR) capability, symmetry options, and a high
degree offl.exibility for the specification ofboundary conditions. A number of these features
will be employed in the numerical examples considered in the following section. Further
details can be found in Banerjee et al. (1985, 1988).

APPLICATIONS

Sudden heating ofa cube
In order to form a simple first example of thermoelastic behavior, the unidirectional

expansion of a cube is examined. Consider a 1.0 in. 3 aluminum cube initially at rest in
thermodynamic equilibrium at zero temperature. Then, suddenly, the face at Y;::: 1.0 in. is
elevated to lOO°F, while the remaining faces are insulated and restrained against normal
displacements. Thus, only axial deformation in the Y-direction is permitted. Nautrally, as
the process progresses, temperature builds along with the lateral stresses axx and a::. To
complete the specification of the problem, the fonowing standard set of material properties
is used to characterize the aluminum:

E;::: 10 X 106 psi, v :::;: 0.33,

(X ;::: 13 X 10- 6rF,

k = 25 in.-Ib./s in. OF, pc.:::;: 200 in.-Ib./in. 3op'

The three-dimensional boundary element idealization consists ofthe simple six element,
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• Co~ne~ nede

o Mldnede

X Inte~ior point

Fig. I.Sudden heating of a cube. Boundary element model.

20-node model displayed in Fig. I. A time step of 0.4 s is selected, corresponding to a non­
dimensional time step of 0.05. Additionally, a finite element analysis of this same problem
was conducted using a modified thermal version of the computer code CRISP (Gunn and
Britto, 1984). The finite element model is a two-dimensional plane strain representation
with 16 linear strain quadrilaterals placed along the diffusion length. In the FE run, a time
step of 0.2 s is employed. (Note that for this particular problem, a plane strain boundary
element analysis would, of course, also be valid; however, all of the GP-BEST results
presented for this example were generated with the three-dimensional model.)

Temperature, displacements and stresses are compared in Table 2. Notice that the
boundary element analysis, with only one element in the flow direction, produces a better
time-temperature history than does a 16-element FE analysis with a smaller time step. Both
methods exhibit greatest error during the initial stages of the process. This is the result of
the imposition of a sudden temperature change. Meanwhile, the comparison of the overall
axial displacement indicates agreement to within 3% for the BE analysis and 5% for the FE
run. The last comparison, in the table, involves lateral stresses at an integration point in
the FE model. The GP-BEST results are quite good throughout the range; however, the
FE stresses exhibit considerable error, particularly during the initial 4 s. Actually, these
stress variations are not unexpected in light of the errors present in the temperature and
displacement response. In the standard finite element process, stresses are computed on the
basis of numerical differentiation of the displacements, whereas in boundary elements, the
stresses at interior points are obtained directly from discretized version of an exact integral
equation. Consequently, the GP-BEST interior stress solution more nearly coincides with
the actual response.

Table 2. Sudden heating of a cube

Temperature eF) Axial displacement (pin.) Lateral stress (hi)
Time at y= 0 at Y = 1.0 at Y = 0.5312

(s) Exact FE OP-BEST Exact FE OP-BEST Exact FE OP-BEST

0.8 4.7 3.4 3.8 910 860 920 -5.6 -3.9 -5.4
1.6 22.0 19.8 20.7 1290 1250 1320 -9.1 -7.7 -9.2
2.4 38.3 36.4 37.7 1570 1540 1610 -11.3 -10.3 -11.7
3.2 51.5 50.0 51.5 1780 1760 1840 -13.1 -12.2 -13.5
4.0 61.9 60.7 62.2 1950 1930 2000 -14.4 -13.8 -14.8

4.8 70.1 69.1 70.5 2090 2070 2130 -15.5 -15.0 -15.9
5.6 76.5 75.7 76.9 2200 2180 2230 -16.3 -15.9 -16.7
6.4 81.5 80.9 81.9 2280 2270 2310 -17.0 -16.7 -17.3
7.2 85.5 84.9 85.8 2340 2330 2370 -17.5 -17.2 -17.8
8.0 88.6 88.2 88.8 2400 2390 2410 -17.9 -17.7 -18.1
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Fig. 2. Cooling of a steel sphere. Boundary element model.
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Cooling ofa steel sphere
Next, consider a solid sphere of radius 1.5 in., initially at a uniform temperature of

200°F, cooled in 100°F air by convection. The thermomechanical properties of the steel are
assumed to be as follows:

E = 30.0 X 106 psi per. == 283 in. -lb. j in. 3 OF

v = 0.30 k = 5.8 in.-lb.js in. OF.

a = 6.0 x 1O- 6 in.jin.oF

Three levels of convection are examined: very slow cooling (h = 125 in.-lb. j sin. 2 OF), mod­
erate cooling (h = 20.0 in.-lb. j sin. 2 OF) and rapid cooling (h -. 00). Analytical solutions for
the temperature distribution in the sphere can be found in Carslaw and Jaeger (1947), while
the corresponding stress fields for the rapid cooling case are presented in Nowacki (1986).

The GP-BEST model for this problem consists of two eight-noded and two six-noded
surface elements on an octant of the sphere as shown in Fig. 2. A total of 17 source points
are utilized, along with the octahedral symmetry option. A time step of 1.25 s is selected
for all of the analyses.

The resulting temperatures versus time for the point at the center of the sphere are
shown in Fig. 3. It is apparent that an excellent correlation is obtained for slow as well as
rapid cooling. Meanwhile, Fig. 4 displays the radial stresses at that point. The correlation
is again very good throughout the time history. Notice that, as expected, with slower surface
cooling the peak stress magnitude decreases while the time to reach steady-state (i.e. zero
stress) increases. Finally, in Fig. 5, the tangential surface stresses are plotted. Even in the
severe, rapid cooling case, the GP-BEST results are quite accurate. In fact, this highlights
one of the primary advantages of the method for transient thermoelastic problems. The
steep thermal gradients that are present at the initial instant can be captured with a high
degree of precision. Consequently, the thermal surface stresses can also be calculated
accurately.

Transient response ofa tube and disk fin heat exchanger
As a final, more practical example, thermal stresses in a stainless steel tube and disk

fin heat exchanger are determined for a typical start-up transient. The tube, with an outer
diameter of 0.375 in. and a wall thickness of 0.050 in., is brazed around its periphery to a
0.020 in. gauge disk fin. A fillet radius of 0.015 in. is assumed between the tube and fin.
Figure 6 details the cross-sectional geometry.

The heat exchanger is maintained, in a stress-free state, at a uniform temperature of
400°F by a liquid flowing continuously inside the tube. Then, suddenly at time zero the
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Fig. 3. Cooling ora steel sphere. GP-BEST results.

outer surfaces of the tube and fin are exposed to a hot gas, initially at 1400=F. The
temperature profiles for both the hot gas and cool liquid are shown in Fig. 7. The cor­
responding convection coefficients for the outer and inner surfaces are 10 and 50 in.­
Ib./sin. 2 of, respectively.

In addition, the following material properties for the stainless steel apply:

E = 29.0 X 106 psi pc, = 368 in. -lb./in. 3 OF

v = 0.30 k = 1.65 in.-Ib./sin. of.

~ = 9.6 x 1O- 6 in./in. OF

For the GP·BEST analysis, a 150 slice of one half of a fin is isolated as depicted in Fig.
8. In order to reduce computation time, a two GMR approach was taken. One GMR

5.0 ~----------------------------,

.0 xxx
xxxxx

o

~ -5.0

....
U'I

-10.0

x x

--- Analytical
+ GP-EEST Ch- CD )

o GP-ElEST Ch-c0.0)
x GP-EEST Ch-l.25)

-15.0 '-::----~ ---.....I-----~:__---_'_----~
.0 10.0 20.0 30.0 40.0 50.0

TIME (sec)

Fig. 4. Cooling ora steel sphere. GP·BEST results.
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Fig. 5. Cooling ofa steel sphere. GP-BEST results.

represents only the fin, while the other contains the tube and the entire braze joint. The
model consists of a total of 40 quadratic surface elements connecting 124 nodes. A time
step of 0.05 s is selected based upon the material properties and element sizes.

Results are presented for points A (inner wall of tube), B (fillet radius) and C (outer
edge of fin) as indicated in Fig. 6. The temperatures at these three points, as calculated via
the GP-BEST analysis, are displayed in Fig. 9. As expected, the thin fin responds much
more quickly to the hot gas than does the tube. This produces compressive stresses in the
fin and tensile stresses in the tube as is evident from Fig. 10, which portrays only the
circumferential component. For the point near the base of the fillet radius, this cir­
cumferential component is not as significant; however, a large radial stress is present as
shown in Fig. 11. Interestingly, the start-up transient examined here is not overly severe.
In fact, peak transient stresses are less than twice the corresponding steady-state values.
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Fig. 6. Tube and fin heat exchanger. Problem definition.
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Fig. 8. Tube and disk fin heat exchanger-2 GMR. Boundary element model.
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CONCLUSIONS

A time-domain boundary element method has been developed for three-dimensional
quasistatic thermoelasticity. To the best of the author's knowledge this represents the first
of its kind for this class of problems. The method may prove to be quite attractive for
primarily two reasons. First, of course, is that no volume discretization is required. As a
result, significant savings in modeling effort are possible, particularly for bulky bodies. The
second attractive feature involves the ability of the boundary-only approach to capture the
steep thermal gradients that are often associated with severe transients. This contention is
supported by the accuracy displayed in the first two examples.

The new formulation has been implemented in a general purpose boundary element
code, OP-BEST, which includes multiregion capability, linear and quadratic surface
elements, arbitrary time-dependent boundary conditions, interior and boundary stress
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computation, and planer and cyclic symmetry options. The final heat exchanger example
was included to illustrate just a few of these features.
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APPENDIX-KERNEL FUNCTIONS

This Appendix contains the detailed presentations of all the kernel functions utilized in the UQT boundary
element formulation. These kernels are based upon continuous source and force fundamental solutions. As a
result, the foIlowing relationships must be used to determine the proper form of the functions required in the
boundary element discretization. That is,

G:"(X-~) = G.,(X-~,n&t) forn = I

G:"(X-~) = G2~(X-~,n&t)-G.,(X-~,(n-I)&t) forn> I,

with similar expressions holding for all the remaining kernels. In the specification of these kernels below, the
arguments (X-~, t) are assumed. The indices

i,j, k, / vary from I to 3

IX, P vary from I to 4

8 equals 4.
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Additionally.

Xi coordinates of integration point'i coordinates of field point
Yi = Xi-'i,2 ~ YiYi.

For the displacement kernel,

Gi9 = 0

G91 = 8~ (k(A~2Jl») [(~)94(~)]

Goo = 4~' G){g'(~)J

whereas, for the traction kernel,

In the above,

,
~ = (CI) 1/2

k
c=­

pc,

For the interior stress kernels,
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where
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cG'J = _1_, _1_ [(3YiJiYk _ 6Jk y, _ 6"YJ) + (6iJY;) 3-.h.l]
iJ~k 161tr Jl(l- v) rJ r r r (

iJFOi = _1_, (_P_) [(3YiYky/n, _ Yink _ Oiky,n')f6('7)_ (YknJ)f7('7) _ (JiYky/n,)rtf6 + (y,n;)'7I;]
iJe. 81tr A.+2Jl rJ r r r rJ r

and the prime, " represents a derivative with respect to '7. Thus.


